

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.intl.elsevierhealth.com/journals/jden

Review

Platform switch and dental implants: A meta-analysis

Bruno Ramos Chrcanovic a,*, Tomas Albrektsson b,a, Ann Wennerberg a

- ^a Department of Prosthodontics, Faculty of Odontology, Malmö University, Malmö, Sweden
- ^b Department of Biomaterials, Göteborg University, Göteborg, Sweden

ARTICLE INFO

Article history:
Received 15 November 2014
Received in revised form
13 December 2014
Accepted 22 December 2014

Keywords:
Dental implants
Platform switch
Implant failure rate
Marginal bone loss
Postoperative infection
Meta-analysis

ABSTRACT

Objectives: To test the null hypothesis of no difference in the implant failure rates, marginal bone loss (MBL) and postoperative infection in patients who received platform-switched implants or platform-matched implants, against the alternative hypothesis of a difference. Data: Main search terms used in combination: dental implant, oral implant, platform switch, switched platform, platform mismatch, and dental implant-abutment design. Sources: An electronic search without time or language restrictions was undertaken in December/2014 in PubMed/Medline, Web of Science, Cochrane Oral Health Group Trials Register plus hand-searching.

Study selection: Eligibility criteria included clinical human studies, either randomized or not. Conclusions: Twenty-eight publications were included, with a total of 1216 platform-switched implants (16 failures; 1.32%) and 1157 platform-matched implants (13 failures; 1.12%). There was less MBL loss at implants with platform-switching than at implants with platform-matching (mean difference $-0.29,\,95\%$ CI -0.38 to $-0.19;\,P<0.00001). An increase of the mean difference of MBL between the procedures was observed with the increase in the follow-up time (P = 0.001) and with the increase of the mismatch between the implant platform and the abutment (P = 0.001). Due to lack of satisfactory information, meta-analyses for the outcomes 'implant failure' and 'postoperative infection' were not performed. The results of the present review should be interpreted with caution due to the presence of uncontrolled confounding factors in the included studies, most of them with short follow-up periods.$

Clinical significance: The question whether platform-matched implants are more at risk for failure and loose more marginal bone than platform-switched implants has received increasing attention in the last years. As the philosophies of treatment alter over time, a periodic review of the different concepts is necessary to refine techniques and eliminate unnecessary procedures, forming a basis for optimum treatment.

© 2014 Elsevier Ltd. All rights reserved.

^{*} Corresponding author at: Department of Prosthodontics, Faculty of Odontology, Malmö University, Carl Gustafs väg 34, SE-205 06 Malmö, Sweden. Tel.: +46 725 541 545; fax: +46 40 6658503.

1. Introduction

One reference criterion to evaluate implant success includes the assessment of changes in crestal bone level over time.¹ After a two-piece implant is uncovered, bone loss of 1.5–2 mm in the vertical axis and 1.4 mm in the horizontal axis was expected with respect to micro-gap (the implant-abutment interface).2 This pattern of bone loss is usually noted when submerged dental implants are restored using a matched abutment and implant platform. An abutment with a smaller diameter than that of the implant platform (an approach known as platform switching) was first observed in the mid-1980s, when larger-diameter implants were often restored with narrower abutments because congruent abutments were often unavailable.3 A radiographic follow-up study has found that the placement of platform-switched implants resulted in a smaller vertical change in the crestal bone level than was commonly seen when restoring conventional implants with abutments of matching diameter.4

The main hypothesis raised in the literature to explain this phenomenon is the fact that the platform-switching concept requires the implant-abutment interface be placed away from the implant shoulder and closer towards the axis to increase the distance of the microgap from the bone, and thereby decrease its bone resorptive effect caused by the bacterial microleakage.

Researchers have been trying to evaluate whether the insertion of implants receiving abutment with a switched platform may influence the survival of dental implants and the marginal bone level (MBL). However, some studies may lack statistical power, given the small number of patients per group in the clinical trials comparing the techniques. Recent reviews^{6,7} showed a significantly less mean MBL change at implants with a platform-switched compared to a platform-matched configuration. However, the authors stressed that the studies included were of relatively short follow-up periods. Moreover, only prospective controlled studies were included, limiting the number of eligible papers. Adding more information from observational studies may aid in clinical reasoning and establish a more solid foundation for causal inferences.⁸

The ability to anticipate outcomes is an essential part of risk management in an implant practice. Recognizing conditions that place the patient at a higher risk of failure will allow the surgeon to make informed decisions and refine the treatment plan to optimize the outcomes. The use of implant therapy in special populations requires consideration of potential benefits to be gained from the therapy. To better appreciate this potential, we conducted a systematic review and meta-analysis of both prospective and retrospective studies to compare the survival rate of dental implants, postoperative infection, and MBL of platform-switched and platform-matched dental implants. The MBL between the two approaches was also compared in relation to different observation periods.

2. Materials and methods

This study followed the PRISMA Statement guidelines. ¹⁰ A review protocol does not exist.

2.1. Objective

The purpose of the present review was to test the null hypothesis of no difference in the implant failure rates, MBL and postoperative infection in patients who received platform-switched implants or platform-matched implants, against the alternative hypothesis of a difference. The focused question was elaborated by using the PICO format (Participants, Interventions, Comparisons and Outcomes): to compare three outcomes (implant failure rates, MBL, and postoperative infection) of clinical studies including patients undergoing implant-prosthetic rehabilitation comparing endosseous implants with platform switching and platform-matching implant-abutment configurations.

2.2. Search strategies

A structured electronic systematic search without time or language restrictions was undertaken in December 2014 in the following databases: PubMed/Medline, Web of Science, and the Cochrane Oral Health Group Trials Register. The following terms were used in the search strategy on PubMed/Medline, refined by selecting the term:

{Subject AND Adjective}

{Subject: (dental implant OR oral implant [text words])

AND

Adjective: (platform switch OR platform switching OR switched platform OR platform switched OR platform mismatch OR dental implant-abutment design [text words])}

The following terms were used in the search strategy on Web of Science, in all databases:

{Subject AND Adjective}

{Subject: (dental implant OR oral implant [topic])

AND

Adjective: (platform switch OR platform switching OR switched platform OR platform switched OR platform mismatch OR dental implant-abutment design [topic])}

The following terms were used in the search strategy on the Cochrane Oral Health Group Trials Register:

(dental implant OR oral implant AND (platform switch OR platform switching OR switched platform OR platform switched OR platform mismatch OR dental implant-abutment design))

A manual search of dental implants-related journals, including British Journal of Oral and Maxillofacial Surgery, Clinical Implant Dentistry and Related Research, Clinical Oral Implants Research, European Journal of Oral Implantology, Implant Dentistry, International Journal of Oral and Maxillofacial Implants, International Journal of Oral and Maxillofacial Surgery, International Journal of Periodontics and Restorative Dentistry, International Journal of Prosthodontics, Journal of Clinical Periodontology, Journal of Dental Research, Journal of Craniofacial Surgery, Journal of Cranio-Maxillofacial Surgery, Journal of Dentistry, Journal of Maxillofacial and Oral Surgery, Journal of Oral Implantology, Journal of Oral and Maxillofacial Surgery, Journal of Oral Rehabilitation, Journal of Periodontology,

Journal of Prosthodontics, Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontology, and Quintessence International, was also performed.

The reference list of the identified studies and the relevant reviews on the subject were also scanned for possible additional studies. Moreover, online databases providing information about clinical trials in progress were checked (clinicaltrials.gov; www.centerwatch.com/clinicaltrials; www.clinicalconnection.com).

2.3. Inclusion and exclusion criteria

Eligibility criteria included clinical human studies, either randomized or not, comparing implant failure rates, MBL and/or postoperative infection in any group of patients receiving platform-switched implants or platform-matched implants. For this review, implant failure represents the complete loss of the implant. Exclusion criteria were case reports, technical reports, biomechanical studies, finite element analysis (FEA) studies, animal studies, in vitro studies, and review papers.

2.4. Study selection

The titles and abstracts of all reports identified through the electronic searches were read independently by the three authors. For studies appearing to meet the inclusion criteria, or for which there were insufficient data in the title and abstract to make a clear decision, the full report was obtained. Disagreements were resolved by discussion between the authors.

2.5. Quality assessment

Quality assessment of the studies was executed according to the Newcastle-Ottawa scale (NOS), which is a quality assessment tool to use when nonrandomized studies are also included in systematic reviews, specifically cohort and casecontrol studies. ¹¹ The NOS calculates the study quality on the basis of three major components: selection, comparability, and outcome for cohort studies. It assigns a maximum of 4 stars for selection, a maximum of 2 stars for comparability, and a maximum of 3 stars for outcome. According to that quality scale, a maximum of 9 stars/points can be given to a study, and this score represents the highest quality, where six or more points were considered high quality.

2.6. Data extraction, meta-analysis and meta-regression

From the studies included in the final analysis, the following data were extracted (when available): year of publication, study design, unicentre or multicentre study, number of patients, patients' age, follow-up, days of antibiotic prophylaxis, mouth rinse, implant healing period, failed and placed implants, postoperative infection, MBL, implant surface modification, type of prosthetic rehabilitation, and jaws receiving implants (maxilla and/or mandible). Contact with authors for possible missing data was performed.

Only randomized clinical trials (RCTs) were considered for the quantitative synthesis (meta-analysis). Implant failure and postoperative infection were the dichotomous outcomes measures evaluated. Weighted mean differences were used to construct forest plots of MBL, a continuous outcome. The statistical unit for 'implant failure' and 'MBL' was the implant, and for 'postoperative infection' was the patient. Whenever outcomes of interest were not clearly stated, the data were not used for analysis. The I2 statistic was used to express the percentage of the total variation across studies due to heterogeneity, with 25% corresponding to low heterogeneity, 50% to moderate and 75% to high. The inverse variance method was used for random-effects or fixed-effects model. Where statistically significant (P < 0.10) heterogeneity is detected, a random-effects model was used to assess the significance of treatment effects. Where no statistically significant heterogeneity was found, analysis was performed using a fixed-effects model. 12 The estimates of relative effect for dichotomous outcomes were expressed in risk ratio (RR) and in mean difference (MD) in millimetres for continuous outcomes, both with a 95% confidence interval (CI). Only if there were studies with similar comparisons reporting the same outcome measures was meta-analysis to be attempted. In the case where no events (or all events) are observed in both groups the study provides no information about relative probability of the event and is automatically omitted from the meta-analysis. In this (these) case(s), the term 'not estimable' is shown under the column of RR of the forest plot table. The software used here automatically checks for problematic zero counts, and adds a fixed value of 0.5 to all cells of study results tables where the problems occur.

In order to explore the possible heterogeneity of effect between studies, a meta-regression was performed in order to verify how a categorical study characteristic is associated with the intervention effects in the meta-analysis, but only when there were at least ten studies available with relevant variables.

A funnel plot (plot of effect size vs. standard error) was drawn. Asymmetry of the funnel plot may indicate publication bias and other biases related to sample size, although the asymmetry may also represent a true relationship between trial size and effect size.

The data were analyzed using the statistical software Review Manager (version 5.3.3, The Nordic Cochrane Centre, The Cochrane Collaboration, Copenhagen, Denmark, 2014). Meta-regressions (when possible) were performed by using the software OpenMeta[Analyst].¹³

3. Results

3.1. Literature search

The study selection process is summarized in Fig. 1. The search strategy resulted in 2907 papers. A total of 28 publications were included in the qualitative synthesis and 18 were included in the quantitative synthesis (meta-analysis).

3.2. Description of the studies

Detailed data of the 28 included studies are listed in Tables 1 and 2. Eighteen RCTs, $^{3,14-30}_{}$ six controlled clinical trials, $^{31-36}_{}$ and four retrospective analyses $^{37-40}_{}$ were included. Two

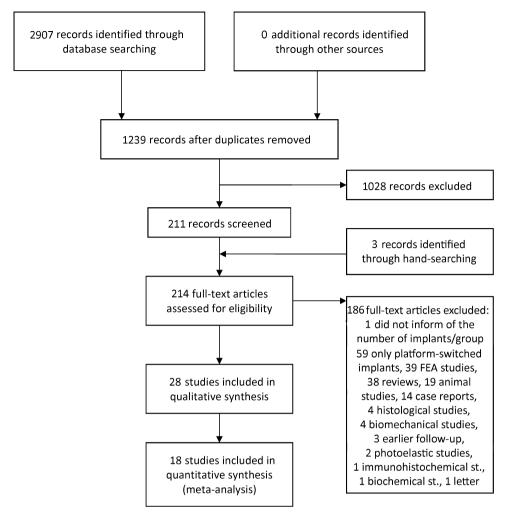


Fig. 1 - Study screening process.

studies^{23,38} did not provide the number of implant failures in each group. Of the 26 studies comparing the procedures with this information, a total of 1216 dental implants were platform-switched with the prosthetic abutment, with 16 failures (1.32%), and 1157 implants were platform-matched with the prosthetic abutment, with 13 failures (1.12%). There were no implant failures in 20 studies.^{3,14–16,18–20,22,25,27,30–37,39,40}

3.3. Quality assessment

Twenty-six studies were of high quality and two were of moderate quality, according to the NOS. The scores are summarized in Table 3.

3.4. Meta-analysis

As only six^{17,21,24,26,28,29} of the twenty-eight included studies reported events of implant failure and with a small number of occurrences, it was unsuitable to perform a meta-analysis on this outcome. Only six studies^{15,16,19,22,27,37} provided information about postoperative infection, with no occurrences. Therefore, meta-analysis for the outcome 'postoperative infection' was not performed.

Eighteen RCTs were included in the meta-analysis for the outcome MBL. There was a significant effect of platformswitched implants on the occurrence of MBL (MD -0.29, 95% CI -0.38 to -0.19; P < 0.00001; random-effects model; Fig. 2) in comparison with platform-matched implants. The outcome was also classified in subgroups of different follow-up periods: (a) ≤ 3 months, (b) 3 months $< t \leq 6$ months, (c) 6 month $s < time \le 1$ year, (d) 1 year < t < 3 years, and (e) ≥ 3 years. The results showed an increase of the MD was observed with the increase in the follow-up time (Fig. 2): (a) MD -0.13 (P = 0.07), (b) MD -0.11 (P = 0.003), (c) MD -0.24 (P < 0.00001), (d) MD -0.46(P = 0.0004), and (e) MD -0.60 (P = 0.01). The test of heterogeneity among all studies showed heterogeneity ($\tau^2 = 0.08$, $\chi^2 = 461.00$, df = 39; P < 0.00001, I² = 92%), as well as the test for subgroup differences (inconsistency across the subgroups) $(\chi^2 = 12.49, df = 4, P = 0.01, I^2 = 68.0\%).$

3.5. Meta-regression

Two covariates were considered relevant: the follow-up period and the mismatching between the platform and the abutment. When a plotting considering the follow-up period as a covariate was performed, it was observed an increase of the MD was observed with the increase in the follow-up time (P = 0.001;

Authors	Published	Study design	Patients (n)	Patients' age range (average) (years)	Follow-up visits (or range)	Antibiotics/ mouth rinse (days)	Healing period/ loading	Failed/ placed implants (n)	Implant failure rate (%)	P value (for failure rate)	Postoperative infection	Bone level of the implant platform	Abutment/ implant platform (G2; mm)
Hürzeler et al. ¹⁴	2007	RCT (unicentre)	15 (NM)	17–69 (55.3)	1 year	NM	NM	0/14 (G1) 0/8 (G2)	0 (G1) 0 (G2)	No failures	NM	NM	4.1/5.0
Canullo et al. ¹⁵	2009	RCT (multicentre)	22 (11, G1; 11, G2)	32–76 (50)	Mean 25 months (range 24–27)	6/14	Immediate	0/11 (G1) 0/11 (G2)	0 (G1) 0 (G2)	No failures	0 (G1) 0 (G2)	Buccal level of the bone crest	3.8/5.5
Crespi et al. ¹⁶	2009	RCT (unicentre)	45 (NM)	25–67 (48)	2 years	7/15	Immediate	0/30 (G1) 0/34 (G2)	0 (G1) 0 (G2)	No failures	0 (G1) 0 (G2)	Subcrestal (1 mm)	NM
Kielbassa et al. ¹⁷	2009	RCT (multicentre)	177 (117, G1; 60, G2)	17–79 (48.7)	1 year	According to the procedures of each centre	Immediate	7/199 (G1) 3/126 (G2)	3.52 (G1) 2.38 (G2)	NM	NM	NM	NM
Prosper et al. ³	2009	RCT (multicentre)	60 (20, G1; 40, G2)	25–70 (53.9)	2 years	1/15	6 months (maxilla) 3 months (mandible)	0/120 (G1) 0/240 (G2)	0 (G1) 0 (G2)	No failures	NM	Buccal level of the bone crest	3.3/3.8 3.8/4.5 4.5/5.2
Trammell et al. ¹⁸	2009	RCT (unicentre)	10 ^a	NM	2 years	NM	2 months	0/13 (G1) 0/12 (G2) ^b	0 (G1) 0 (G2)	No failures	NM		NM
Vigolo and Givani ³¹	2009	CCT (unicentre)	144 ^a	25–55 (37)	5 years	NM	4 months	0/97 (G1) 0/85 (G2)	0 (G1) 0 (G2)	No failures	NM	Crestal	NM
Bilhan et al. ³⁷	2010	RA (unicentre)	51 (NM)	18–86 (59)	3 years	NM	NM	0/75 (G1) 0/51 (G2) ^b	0 (G1) 0 (G2)	No failures	0 (G1) 0 (G2)	NM	NM
Canullo et al. ¹⁹	2010	RCT (multicentre)	31 (NM)	36–78 (52.1)	33 months	6/14	3 months	0/50 (G1) 0/19 (G2)	0 (G1) 0 (G2)	No failures	0 (G1) 0 (G2)	Crestal	3.8/4.3 3.8/4.8 3.8/5.5
Fickl et al. ³²	2010	CCT (unicentre)	36 ^a	17–69 (55.3)	1 year	NM	6 months (maxilla) 3 months (mandible)	0/75 (G1) 0/14 (G2)	0 (G1) 0 (G2)	No failures	NM	Subcrestal (5.0 implants, G1) Crestal (4.0 implants, G2)	4.1/5.0
Linkevicius et al. ³³	2010	CCT (unicentre)	4 (NM)	37–56 (43)	1 year	1/7	4 months (maxilla) 2 months (mandible)	0/6 (G1) 0/6 (G2)	0 (G1) 0 (G2)	No failures	NM	NM	NM
Veis et al. ³⁸	2010	RA (unicentre)	NM	NM	2 years	NM	5–6 months (maxilla) 3–5 months (mandible)	NM/89 (G1) NM/193 (G2)	-	-	NM	Supracrestal, crestal, and subcrestal	4.0/5.0
Canullo et al. ²⁰	2011	RCT (multicentre)	9 (NM)	50–68 (59)	3 years	"Started 1 day before surgery"	2–3 months	0/17 (G1) 0/5 (G2)	0 (G1) 0 (G2)	No failures	NM	Crestal	3.8/4.3 3.8/4.8 3.8/5.5
de Almeida et al. ³⁹	2011	RA (unicentre)	26 (16, G1; 10, G2)	25–70 (41)	Mean 33 months (range 6-60)	NM	1–6 months	0/27 (G1) 0/15 (G2) ^b	-	-	NM	Subcrestal (36 of 42)	3.8/5.5 4.5/6.5
Pieri et al. ²¹	2011	RCT (unicentre)	40 (20, G1; 20, G2)	26–67 (46)	1 year	7/7	Immediate	1/20 (G1) 0/20 (G2)	5 (G1) 0 (G2)	NM	NM	Supracrestal (0.5 mm)	Mismatch of 0.35 mm
Canullo et al. ²²	2012	RCT (multicentre)	40 ^a	NM (58.2)	18 months of loading	6/14	2–3 months	` '	0 (G1) 0 (G2)	No failures	0 (G1) 0 (G2)	Crestal	Mismatch of 0.5 mm
Dursun et al. ³⁴	2012	CCT (unicentre)	19 (NM)	25–57 (43)	6 months	6/NM	3 months	0/16 (G1) 0/16 (G2)	0 (G1) 0 (G2)	No failures	NM	NM	NM/3.75 or 3.

Authors	Published	Study	Patients (n)	Patients'	Follow-up	Antibiotics/	Healing	Failed/	Implant	P value	Postoperative	Bone level	Abutment/
	1 401101104	design	1 44101110 (1)	age range (average) (years)	visits (or range)	mouth rinse (days)	period/ loading	placed implants (n)	failure rate (%)	(for failure rate)	infection	of the implant platform	implant platform (G2; mm)
Fernandez-Formoso et al. ²³	2012	RCT (unicentre)	51 (26, G1; 25, G2)	26-69 (43)	1 year	NM	NM	NM/58 (G1) NM/56 (G2)	-	-	NM	Crestal	NM
Enkling et al. ²⁵	2013	RCT (unicentre)	25 ^a	NM (51)	3 years	NM	4 months	0/25 (G1) 0/25 (G2)	0 (G1) 0 (G2)	No failures	NM	Crestal	3.3/4.0
Gultekin et al. ³⁵	2013	CCT (unicentre)	25 ^a	19–59 (41.3)	15 months	3/14	3 months	0/43 (G1) 0/50 (G2)	0 (G1) 0 (G2)	No failures	NM	Crestal	Mismatch of 0.25 mm
Peñarrocha-Diago et al. ²⁴	2013	RCT (unicentre)	15 (7, G1; 8, G2)	44–77 (56.9)	1 year	NM	3 months	1/64 (G1) 1/56 (G2)	1.56 (G1) 1.79 (G2)	NM	NM	Crestal	NM
Telleman et al. ²⁶	2013	RCT (unicentre)	92 (45, G1; 47, G2)	18–70 (50)	1 year	NM	4 months	3/73 (G1) 6/76 (G2)	4.11 (G1) 7.89 (G2)	0.33	NM	Crestal	3.3/4.0 4.2/5.0
Vandeweghe et al. ⁴⁰	2013	RA (multicentre)	38 ^a	20-82 (49)	Mean 26 months (range 8–44)	NM	Immediate	0/9 (G1) 0/34 (G2)	0 (G1) 0 (G2)	No failures	NM	NM	NM
Glibert et al. ³⁶	2014	CCT (unicentre)	48 (NM)	> 18	Mean 20 months (range 14–27)	10/"prescribed"	Immediate (n = 95) 10 weeks (n = 20)	0/45 (G1) 0/70 (G2)	0 (G1) 0 (G2)	No failures	NM	Crestal Subcrestal (2–3 mm; in the cases of fresh sockets)	4.0/5.0
Meloni et al. ²⁷	2014	RCT (unicentre)	18 (split- mouth)	28-70 (48)	1 year	7/14	3 months	0/18 (G1) 0/18 (G2)	0 (G1) 0 (G2)	No failures	0 (G1) 0 (G2)	NM	3.5/4.3 4.3/5.0
Rocha et al. ²⁸	2014	RCT (multicentre)	76 (39, G1; 37, G2)	NM (51)	2 years	According to the procedures of each centre	10 weeks	2/83 (G1) 1/80 (G2)	2.41 (G1) 1.25 (G2)	>0.05	NM	NM	3.2/3.8 3.7/4.3 4.3/5.0
Telleman et al. ²⁹	2014	RCT (unicentre)	17 (split- mouth)	21–67 (53.7)	1 year	NM	4 months	2/31 (G1) 2/31 (G2)	6.45 (G1) 6.45 (G2)	Equal failure rates	NM	Crestal	3.3/4.0 4.2/5.0
Wang et al. ³⁰	2014	RCT (unicentre)	19 ^a	23–76 (55.4)	1 year	"Prescribed"/21	3 months	0/15 (G1) 0/15 (G2)	0 (G1) 0 (G2)	No failures	NM	Subcrestal (0.5 mm)	Mismatch of 0.6 mm

NM, not mentioned; NP, not performed; RCT, randomized controlled trial; CCT, controlled clinical trial; RA, retrospective analysis; G1, group platform-switched implants; G2, group platform-matched implants; HA-coated, hydroxyapatite-coated; SC, single crown; FPP, fixed partial prosthesis; FAP, full-arch prosthesis; GBR, guided bone regeneration.

a Some or all patients received both platform-switched and platform-matched implants.
b Unpublished information was obtained by personal communication with one of the authors.

Authors	Marginal bone loss (mean \pm SD) (mm)	Implant surface modification (brand)	Region/prosthetic rehabilitation/ opposing dentition	Observations
Hürzeler et al. ¹⁴	0.12 ± 0.40 (G1, $n = 14$) 0.29 ± 0.34 (G2, $n = 8$) (1 year)	Acid-etched (Implant Innovations, Palm Beach Gardens, FL, USA)	Maxilla, mandible/ SC, FPP/NM	Only in the posterior region
Canullo et al. ¹⁵	NM	Sandblasted and acid-etched (Global, Sweden & Martina, Padua, Italy)	Maxilla/SC/NM	Only in region of teeth 15-25, all implants inserted in fresh extraction sockets, patients who smoked less than 10 cigarettes/day were also included, but the exact numbe was not informed
Crespi et al. ¹⁶	0.78 ± 0.49 (G1, $n = 30$) 0.82 ± 0.40 (G2, $n = 34$), (1 year) 0.73 ± 0.52 (G1, $n = 30$) 0.78 ± 0.45 (G2, $n = 34$), (2 years)	Sandblasted and acid-etched (Ankylos Plus, Dentsply-Friadent, Mannheim, Germany, G1), sandblasted and acidetched (Seven, Sweden & Martina, Padua, Italy, G2)	Maxilla, mandible/ SC, FPP/NM	All implants inserted in fresh extraction sockets, patients who smoked less than 10 cigarettes/day were also included, but the exact numbe was not informed
Kielbassa et al. ¹⁷	0.95 ± 1.37 (G1, internal hexagon, $n = 87$) 0.64 ± 0.97 (G1, external hexagon, $n = 69$) 0.63 ± 1.18 (G2, $n = 85$) (1 year)	Oxidized (TiUnite, NobelActive, G1; NobelReplace Tapered Groovy, G2; Nobel Biocare AB, Göteborg, Sweden)	Maxilla, mandible/ SC (52.3%), FPP (35.7%), FAP (12%)/ NM	Grafting procedures in 18 implant sites, al implants inserted in healed sites (minimum of 6 months postextraction healing)
Prosper et al. ³	0.013 ± 0.091 (G1, submerged, $n = 120$) 0.272 ± 0.367 (G2, submerged, $n = 120$) 0.101 ± 0.274 (G2, nonsubm., $n = 120$), (1 year) 0.045 ± 0.227 (G1, submerged, $n = 120$) 0.275 ± 0.467 (G2, submerged, $n = 120$) 0.193 ± 0.474 (G2, nonsubm., $n = 120$), (2 years)	Sandblasted and acid-etched (BioActive Covering SLA, Winsix Ltd., London, United Kingdom)	Maxilla, mandible/ NM/NM	No smokers, all implants inserted in healed sites (minimum of 3 months postextraction healing)
Trammell et al. ¹⁸	0.99 ± 0.53 (G1, n = 13) 1.19 ± 0.58 (G2, n = 12), (2 years)	Acid-etched (Osseotite Certain NTXP, G1; Osseotite Certain, G2; Biomet 3i, Palm Beach Gardens, FL, USA)	NM/SC, FPP/NM	Patients who smoked less than 10 cigarettes/day were also included, but the exact numbe was not informed
Vigolo and Givani ³¹	0.6 ± 0.2 (G1, $n = 97$), 0.9 ± 0.3 (G2, $n = 85$), (1 year) 0.6 ± 0.2 (G1, $n = 97$), 1.0 ± 0.3 (G2, $n = 85$), (2 years) 0.6 ± 0.2 (G1, $n = 97$), 1.0 ± 0.3 (G2, $n = 85$), (3 years) 0.6 ± 0.2 (G1, $n = 97$), 1.1 ± 0.3 (G2, $n = 85$), (4 years) 0.6 ± 0.2 (G1, $n = 97$), 1.1 ± 0.3 (G2, $n = 85$), (4 years) 0.6 ± 0.2 (G1, $n = 97$), 1.1 ± 0.3 (G2, $n = 85$), (5 years)	Acid-etched (3i/ Implant Innovations, Palm Beach Gardens, FL, USA)	Maxilla, mandible/ SC/NM	Only in the molar region

A + la	Managara 1 1 1	Iland Con	D = = / 1 1	01
Authors	Marginal bone loss (mean \pm SD) (mm)	Implant surface modification (brand)	Region/prosthetic rehabilitation/ opposing dentition	Observations
Bilhan et al. ³⁷	0.43 ± 0.12 (6 months), 0.77 ± 0.15 (1 year) 0.86 ± 0.16 (2 years), 0.89 ± 0.16 (3 years) (G1, mesial, $n = 75$) 0.47 ± 0.14 (6 months), 0.82 ± 0.17 (1 year) 0.91 ± 0.18 (2 years), 0.98 ± 0.20 (3 years) (G2, mesial, $n = 51$) 0.44 ± 0.12 (6 months), 0.79 ± 0.17 (1 year) 0.87 ± 0.17 (2 years), 0.91 ± 0.17 (3 years) (G1, distal, $n = 75$) 0.48 ± 0.14 (6 months), 0.85 ± 0.18 (1 year) 0.95 ± 0.19 (2 years), 1.00 ± 0.19 (3 years)	Several (Astra, Astratech AB, Mölndal, Sweden, n = 75; ITI, Straumann AG, Waldenburg, Switzerland; n = 25; Zimmer, Zimmer Dental, Carlsbad, CA, USA; Biolok, Biohorizons, Birmingham, AL, USA, n = 14)	Mandible/ overdentures/NM	
Canullo et al. ¹⁹	(G2, distal, $n = 51$) 0.74 ± 0.39 (9 months), 0.95 ± 0.35 (15 months) 0.99 ± 0.417 (21 months), 0.99 ± 0.42 (33 months) (G1, 3.8/4.3, $n = 17$) 0.64 ± 0.40 (9 months), 0.78 ± 0.35 (15 months) 0.82 ± 0.362 (21 months), 0.87 ± 0.43 (33 mo) (G1, 3.8/4.8, $n = 13$) 0.41 ± 0.28 (9 months), 0.51 ± 0.29 (15 months) 0.56 ± 0.31 (21 months), 0.64 ± 0.32 (33 months) (G1, 3.8/5.5, $n = 14$) 1.23 ± 0.67 (9 months), 1.46 ± 0.53 (15 months) 1.49 ± 0.544 (21 months), 1.48 ± 0.42 (33 monthso)	Sandblasted and acid-etched (Global, Sweden & Martina, Padua, Italy)	Maxilla/FPP/NM	Only in the posterior region, 21 sinus lifts, all implants inserted in healed sites (minimum of 6 months postextraction healing), patients who smoked less than 10 cigarettes/day were also included, but the exact number was not informed
Fickl et al. ³²	(G2, $n = 17$) 0.30 ± 0.07 (G1, $n = 75$) 0.68 ± 0.17 (G2, $n = 14$), (3 months) 0.39 ± 0.07 (G1, $n = 75$) 1.00 ± 0.22 (G2, $n = 14$), (1 year)	Acid-etched (Osseotite, Biomet 3i, Palm Beach Gardens, FL, USA)	Maxilla, mandible/ SC, FPP/NM	All implants inserted in healed sites
Linkevicius et al. ³³	1.81 ± 0.39 (G1, mesial, n = 6) 1.60 ± 0.46 (G2, mesial, n = 6) 1.70 ± 0.35 (G1, distal, n = 6) 1.76 ± 0.45 (G2, distal, n = 6) (1 year)	Acid-etched + CaP particles deposition (Prevail, 3i Biomet, Palm Beach Gardens, FL, USA, G1), HA- coated (Prodigy, BioHorizons, Birmingham, AL, USA, G2)	Maxilla, mandible/ FPP/NM	No smokers, all implants inserted in healed sites (minimum of 6 months postextraction healing)

Table 2 (Continued) Authors	Marginal bone loss	Implant surface	Region/prosthetic	Observations
	$(mean \pm SD) (mm)$	modification (brand)	rehabilitation/ opposing dentition	0000.14.101.0
Veis et al. ³⁸	0.75 ± 0.55 (G1, n = 89) 0.69 ± 0.47 (G1, supracrestal, n = 34) 1.13 ± 0.42 (G1, crestal, n = 30) 0.39 ± 0.52 (G1, subcrestal, n = 25) 0.88 ± 0.85 (G2, n = 193) 0.60 ± 0.67 (G2, supracrestal, n = 64) 1.23 ± 0.96 (G2, crestal, n = 65) 0.81 ± 0.79 (G2, subcrestal, n = 64) (2 years)	Acid-etched (Osseotite, Biomet 3i, Palm Beach Gardens, FL, USA)	Maxilla, mandible/ SC, FPP/NM	Implants placed at 3 different crestal levels: supracrestal, crestal, and subcrestal
Canullo et al. ²⁰	0.83 ± 0.44 (G1, 3.8/4.3, n = 6) 0.49 ± 0.22 (G1, 3.8/4.8, n = 5) 0.38 ± 0.12 (G1, 3.8/5.5, n = 6) 1.36 ± 0.39 (G2, n = 5) (3 years)	Sandblasted and acid-etched (Global, Sweden & Martina, Padua, Italy)	Maxilla/FPP/NM	Only in the posterior region, patients who smoked less than 10 cigarettes/day were also included, but the exact number was not informed
de Almeida et al. ³⁹	0.27 (G1, n = 27) 2.30 (G2, n = 15) (mean 30-G1 and 39-G2 months)	HA-coated (Frialit-2, Dentsply Friadent, Mannheim, Germany)	Maxilla, mandible/ SC/NM	All implants inserted in healed sites (minimum of 6 months postextraction healing)
Pieri et al. ²¹	0.09 ± 0.1 (G1, $n = 19$) 0.24 ± 0.15 (G2, $n = 19$), (4 months) 0.2 ± 0.17 (G1, $n = 18$) 0.51 ± 0.24 (G2, $n = 19$), (1 year)	Calcium- and phosphorus-enriched titanium oxide surface (Samo Smiler Implants, Biospark, Bologna, Italy)	Maxilla/SC/natural dentition or fixed restoration	Only premolars, all implants inserted in fresh extraction sockets, 3 smokers, grafting procedures in all implants
Canullo et al. ²²	0.5 ± 0.1 (G1, $n = 40$) 1.6 ± 0.3 (G2, $n = 40$) (18 months)	Sandblasted and acid-etched or anodized (Amplified, P-I Brånemark Philosophy, Bauru, Brazil, G1), sandblasted and acidetched or anodized (EH, P-I Brånemark Philosophy, Bauru, Brazil, G2)	Maxilla/FPP/NM	Only in the posterior region, 58 implants inserted after sinus lifting, patients who smoked less than 10 cigarettes/day were also included, but the exact number was not informed
Dursun et al. ³⁴	0.11 ± 0.09 (G1, $n = 16$) 0.19 ± 0.24 (G2, $n = 16$), (1 month) 0.34 ± 0.24 (G1, $n = 16$) 0.31 ± 0.23 (G2, $n = 16$), (3 months) 0.72 ± 0.53 (G1, $n = 16$) 0.56 ± 0.35 (G2, $n = 16$), (6 months)	Sandblasted and acid-etched (Revois, Curasan AG, Germany; G1), sandblasted and acidetched (Tapered Screw Vent, Zimmer Dental, Carlsbad, CA, USA; G2)	Mandible/"fixed prosthesis"/NM	Only in premolar/ molar regions, single- stage protocol, no smokers, no bruxers, all implants inserted in healed sites (sockets left to heal between 6 months and 1 year)
Fernandez-Formoso et al. ²³	-0.01 ± 0.50 (G1, $n = 58$) 0.42 ± 0.11 (G2, $n = 56$) (1 year)	Sandblasted and acid-etched (SLA; Bone Level Type, G1; Standard Plus Type, G2; Straumann, Waldenburg, Switzerland)	Maxilla, mandible/ SC, FPP/NM	Only in the posterior region, all implants inserted in healed sites (minimum of 3 months postextraction healing), no smokers

Table 2 (Continued)				
Authors	Marginal bone loss (mean \pm SD) (mm)	Implant surface modification (brand)	Region/prosthetic rehabilitation/ opposing dentition	Observations
Enkling et al. ²⁵	0.33 \pm 0.52 (G1, n = 25), 0.38 \pm 0.43 (G2, n = 25), (3 months) 0.44 \pm 0.42 (G1, n = 25), (4 months) 0.53 \pm 0.35 (G1, n = 25), (25 months) 0.56 \pm 0.35 (G2, n = 25), (12 months) 0.56 \pm 0.35 (G1, n = 25), (25 months) 0.69 \pm 0.43 (G1, n = 25), (25 months) 0.74 \pm 0.57 (G2, n = 25), (38 months)	Sandblasted and acid-etched (SICace, SIC-Invent AG, Basel, Switzerland)	Mandible/SC/NM	Only in the posterior region, all implants inserted in healed sites (minimum of 6 months postextraction healing)
Gultekin et al. ³⁵	0.22 ± 0.11 (G1, $n = 43$) 0.24 ± 0.14 (G2, $n = 50$), (3 months) 0.35 ± 0.13 (G1, $n = 43$) 0.83 ± 0.16 (G2, $n = 50$), (1 year)	Oxidized (TiUnite, Nobel Biocare AB, Göteborg, Sweden)	Maxilla, mandible/ NM/NM	No smokers, no bruxers, all implants inserted in healed sites (minimum of 4 months postextraction healing)
Peñarrocha-Diago et al. ²⁴	0.07 ± 0.13 (G1, $n = 64$) 0.27 ± 0.43 (G2, $n = 56$), (6 months) 0.12 ± 0.17 (G1, $n = 64$) 0.38 ± 0.51 (G2, $n = 56$), (1 year)	Resorbable blast media (Inhex, Mozo- Grau, Valladolid, Spain, G1), turned (Osseous, Mozo-Grau, Valladolid, Spain, G2)	Maxilla, mandible/ FPP, overdenture/ NM	Only completely edentulous patients, 3 smokers
Telleman et al. ²⁶	0.51 \pm 0.56 (G1, n = 73) 0.76 \pm 0.60 (G2, n = 76), (1 month) 0.50 \pm 0.53 (G1, n = 73) 0.74 \pm 0.61 (G2, n = 76), (1 year)	Acid-etched + CaP particles deposition (NanoTite Certain Prevail, Biomet 3i, Palm Beach Gardens, FL, USA; G1), acid- etched + CaP particles deposition (NanoTite XP Certain, Biomet 3i, Palm Beach Gardens, FL, USA; G2)	Maxilla, mandible/ SC, FPP/NM	Only in the posterior region, short implants only (8.5 mm), no smokers, all implants inserted in healed sites (minimum of 3-4 months postextraction healing), GBR in some cases
Vandeweghe et al. ⁴⁰	0.78 ± 0.39 (G1, $n = 9$) 1.06 ± 0.24 (G2, $n = 34$) (mean 26 months)	Sandblasted (Southern Implants, Irene, South Africa)	Maxilla, mandible/ SC/NM	23 implants placed ir fresh extraction sockets, 5 smokers
Glibert et al. ³⁶	0.63 ± 0.18 (G1, $n = 45$) 1.02 ± 0.14 (G2, $n = 70$) (1 year)	Acid-etched (Osseotite 2 Certain, Biomet 3i, Palm Beach, FL, USA)	Maxilla, mandible/ SC, FPP/NM	8 implants in fresh extraction sockets using a flapless approach. Patients who were diabetic and who smoke were also included, but the exact number was not informed
Meloni et al. ²⁷	0.23 ± 0.13 (G1, $n = 18$) 0.26 ± 0.15 (G2, $n = 18$), 6 months 0.50 ± 0.27 (G1, $n = 18$) 0.56 ± 0.22 (G2, $n = 18$), 1 year	Oxidized (TiUnite, Nobel Replace Tapered Groovy, Nobel Biocare, Goteborg, Sweden)	Maxilla, mandible/ SC/NM	Only in patients with bilaterally missing single molars. Patients who smoked less than 10 cigarettes/day were also included, but the exact numbe was not informed

Table 2 (Continued)				
Authors	Marginal bone loss (mean \pm SD) (mm)	Implant surface modification (brand)	Region/prosthetic rehabilitation/ opposing dentition	Observations
Rocha et al. ²⁸	0.53 ± 0.45 (G1, n = 76) 0.63 ± 0.70 (G2, n = 70), (10 weeks) 0.43 ± 0.42 (G1, n = 76) 0.72 ± 0.60 (G2, n = 68), (12 months) 0.27 ± 0.44 (G1, n = 69) 0.79 ± 0.68 (G2, n = 64), (24 months)	Sandblasted and acid-etched (Screw- line Promote, Camlog Biotechnologies AG, Basel, Switzerland)	Mandible/SC/"fixed dentition"	Only in the posterior region, 9 smokers
Telleman et al. ²⁹	0.44 \pm 0.57 (G1, n = 31) 0.82 \pm 0.59 (G2, n = 31), (1 month) 0.53 \pm 0.54 (G1, n = 29) 0.85 \pm 0.65 (G2, n = 29), (1 year)	Acid-etched + CaP particles deposition (Certain Prevail, Biomet 3i, Palm Beach Gardens, FL, USA; G1), acid- etched + CaP particles deposition (XP Certain, Biomet 3i, Palm Beach Gardens, FL, USA; G2)	Maxilla, mandible/ SC, FPP/NM	Only in the posterior region, short implants only (8.5 mm), no smokers, all implants inserted in healed sites (minimum of 3–4 months postextraction healing), GBR in some cases
Wang et al. ³⁰	0.08 ± 0.19 (G1, $n = 8$) 0.05 ± 0.07 (G2, $n = 11$), (3 months) 0.10 ± 0.17 (G1, $n = 8$) 0.17 ± 0.19 (G2, $n = 11$), (6 months) 0.04 ± 0.08 (G1, $n = 8$) 0.19 ± 0.16 (G2, $n = 11$), (1 year)	Sandblasted and acid-etched (Superline, Dentium USA, Cypress, CA, USA)	Maxilla, mandible/ SC/natural dentition	Only in the posterior region, no smokers, all implants inserted in healed sites

y = 0.099 + 0.015x; Fig. 3). According to this statistical model, an increase of each year in follow-up time increases the MD in 0.180 mm (12 × 0.015). Moreover, the mismatch was also considered as a covariate. It was observed that the bigger the mismatch between the implant platform and the abutment, the bigger the mean difference of the MBL between the platform-switched and the platform-matched implants, the MD being statistically significant (P = 0.001; y = -0.041 + 0.907x; Fig. 4). According to this statistical model, an increase of every 0.1 mm in the mismatch increases the MD in 0.0907 mm (0.907/10).

3.6. Publication bias

The funnel plot did not show a clear asymmetry when the studies reporting the outcome 'MBL' were analyzed (Fig. 5), indicating possible absence of publication bias.

4. Discussion

The present study cannot suggest that the insertion of platform-switched implants affects the implant failure rates or postoperative infection. As some of the included studies are limited by a small cohort size and only six studies ^{17,21,24,26,28,30} reported occurrences of implant failure and only other six studies ^{15,16,19,22,27,37} provided information about postoperative infection, with no occurrences, it is difficult to properly estimate this influence.

This study observed that platform-switched implants, in comparison to the platform-matched implants, results in significantly less MBL. The magnitude of the marginal bone level alterations observed varied among the studies, which may be due to different observation periods. Thus, the analysis was classified in subgroups of different follow-up periods, showing that there was an increase of the MD of MBL between the approaches with the increase in the follow-up periods, being statistically significant. It seems that there is indeed a higher short-term MBL in platform-matched implants in comparison with the platform-switched implants, but there is a slightly evidence that the curve levels out with time (change of the MD with time: -0.13, -0.11, -0.24, -0.46, -0.60; see Fig. 2). The possibility cannot be ignored, but it is not known whether the loss of marginal bone is a long term process. The problem is that there are only few studies with a long follow-up. Moreover, it is debatable whether such mean difference may have clinical significance.

Several hypotheses trying to explain this phenomenon have been raised in the literature. Some studies have shown that bone resorption around the implant neck does not begin until the implant is uncovered and exposed to the oral cavity, which invariably leads to bacterial contamination of the gap between implant and superstructure. The bacterial reservoir in a microgap may continuously invade the bone, resulting in peri-implant inflammation and bone loss. This phenomenon, known as bacterial microleakage, may influence peri-implant health, at least in the short term. The

Study	Published	Selection					parability		Total (9/9)		
		Representativeness of the exposed cohort	Selection of external control		Outcome of interest not present at start	Comparability of cohorts		Assessment of outcome	Follow-up long enough ^a	Adequacy of follow-up	
					•		Additional factor				
Hürzeler et al. ¹⁴	2007	0	*	*	*	*	0	*	0	*	6/9
Canullo et al. ¹⁵	2009	0	*	*	*	*	*	*	0	*	7/9
Crespi et al. ¹⁶	2009	0	*	*	*	*	*	*	0	*	7/9
Kielbassa et al. ¹⁷	2009	0	*	*	*	*	*	*	0	*	7/9
Prosper et al. ³	2009	0	*	*	*	*	*	*	0	*	7/9
Trammell et al. ¹⁸	2009	*	*	*	*	*	0	*	0	0	6/9
Vigolo and Givani ³¹	2009	0	*	*	*	*	0	*	*	0	6/9
Bilhan et al. ³⁷	2010	0	*	*	*	*	0	*	0	0	5/9
Canullo et al. ¹⁹	2010	0	*	*	*	*	*	*	0	*	7/9
Fickl et al. ³²	2010	0	*	*	*	*	0	*	0	*	6/9
Linkevicius et al. ³³	2010	0	*	*	*	*	0	*	0	*	6/9
Veis et al. ³⁸	2010	*	*	*	*	*	*	*	0	0	7/9
Canullo et al. ²⁰	2011	0	*	*	*	*	*	*	0	*	7/9
de Almeida et al. ³⁹	2011	*	*	*	*	*	Ó	*	0	0	6/9
Pieri et al. ²¹	2011	0	*	*	*	*	*	*	0	*	7/9
Canullo et al. ²²	2012	0	*	*	*	*	*	*	0	*	7/9
Dursun et al. ³⁴	2012	0	*	*	*	*	*	*	0	*	7/9
Fernandez-Formoso et al. ²³	2012	0	*	*	*	*	0	*	0	*	6/9
Enkling et al. ²⁵	2013	0	*	*	*	*	0	*	0	*	6/9
Gultekin et al. ³⁵	2013	0	*	*	*	*	0	*	0	0	5/9
Peñarrocha-Diago et al. ²⁴	2013	0	*	*	*	*	*	*	0	*	7/9
Telleman et al. ²⁶	2013	0	*	÷	*	*	*	÷	0	*	7/9
Vandeweghe et al. ⁴⁰	2013	0	*	*	*	*	*	*	0	Ô	6/9
Glibert et al. ³⁶	2014	*	*	*	*	÷	÷	÷	0	0	7/9
Meloni et al. ²⁷	2014	Ô	*	*	*	*	Ô	*	0	*	6/9
Rocha et al. ²⁸	2014	0	*	*	*	÷	*	*	0	*	7/9
Telleman et al. ²⁹	2014	0	*	*	*	*	÷	÷	0	*	7/9
Wang et al. ³⁰	2014	0	÷	Ŷ.	÷	Ĵ	÷	÷	0	*	7/9

^a Five years of follow-up was chosen to be enough for the outcome 'implant failure' to occur.

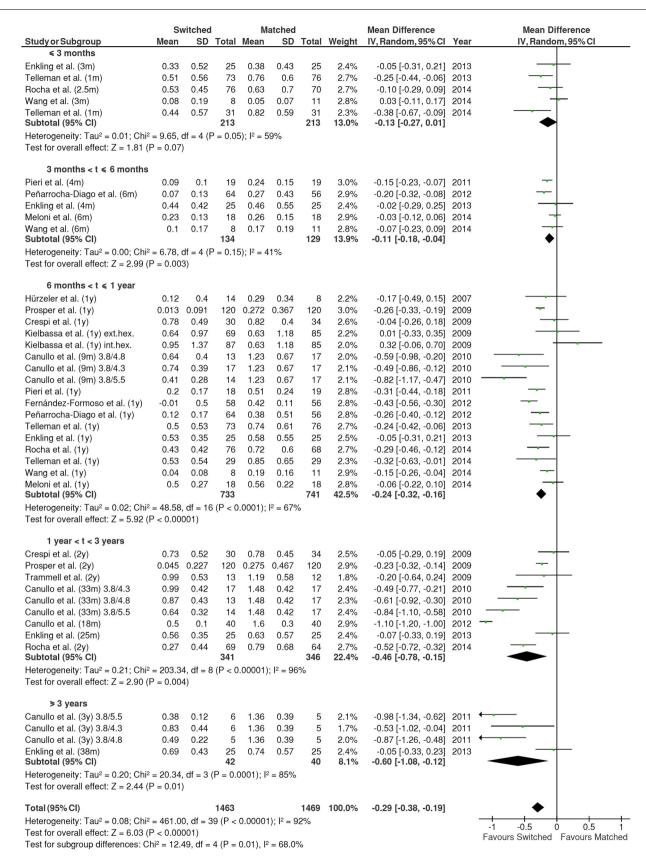


Fig. 2 - Forest plot for the event 'marginal bone loss'.

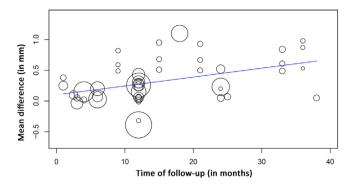


Fig. 3 – Scatter plot for the meta-regression with the association between the mean differences (in millimetres) of the marginal bone loss between the two procedures (platform-switched vs. platform-matched) and the follow-up time (in months).

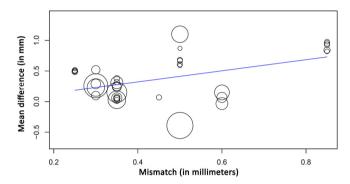


Fig. 4 – Scatter plot for the meta-regression with the association between the mean differences (in millimetres) of the marginal bone loss between the two procedures (platform-switched vs. platform-matched) and the mismatch (in millimetres).

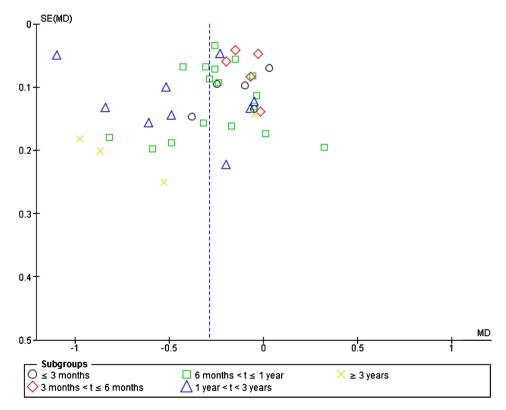


Fig. 5 - Funnel plot for the studies reporting the outcome event 'marginal bone loss'.

platform-switching concept requires the implant-abutment interface be placed away from the implant shoulder and closer towards the axis to increase the distance of the microgap from the bone, ⁴ and thereby decrease its bone resorptive effect ⁵ caused by the bacterial microleakage, findings supported by animal ^{45,46} and human histological studies. ^{47,48} Additional bone resorption seems to be correlated to micro-movements at the abutment-implant interface. ⁴⁹ The platform-switch approach may keep away the micromotion between the implant and abutment from the bone.

Moreover, it was observed that the bigger the mismatch between the implant platform and the abutment, the bigger the MD of the MBL between the platform-switched and the platform-matched implants, being statistically significant. This means that increasing the distance between the implant-abutment interface and adjacent bone may increase the anti-bone-resorptive effect of the platform-switching concept. It has been speculated that the findings of reduced bone remodelling accompanying a larger implant-abutment difference may be due to an increased implant diameter rather than to the platform, ²⁵ because a bigger mismatch is often caused by the use of a wider diameter. ²⁹

It is important to stress that the associations found in these meta-regressions (with the covariates follow-up time and the platform mismatch) should be considered hypothesis generating only and cannot be regarded as proof of causality.⁵⁰

The large variation in results between studies may be due to the fact that the studies differed regarding the use of implant-abutment connection type, i.e. different platform designs, and the surface texture at the implant neck/collar. One example is the difference between the horizontal platforms of the Branemark (Nobel Biocare AB, Göteborg, Sweden) and Osseotite (Biomet 3i, Palm Beach Gardens, FL, USA) implants when compared to the inclined platform of the Straumann (Straumann AG, Waldenburg, Switzerland) and Astra (Astratech AB, Mölndal, Sweden) implants. It is unknown to which magnitude these differences in platform design may affect the results. Concerning the collar implant design, a dog model study⁵¹ observed that choosing a completely SLA-surfaced non-submerged implant can reduce the amount of peri-implant crestal bone loss and reduce the distance from the microgap between implant/abutment to the first bone-implant contact around unloaded implants compared to implants with a machined collar. On the other hand, a recent human clinical trial⁵² evaluated two similar implant types differing only in the surface texture of the neck and showed no significant influence on marginal bone level changes. Unfortunately, the data were insufficient to allow for statistical assessment of implant design characteristics.

All these results also depend on the location of the microgap in relation to the level of the crestal bone. Hermann et al. ⁵³ observed in an animal model that if the microgap was moved coronally away from the alveolar crest, less bone loss would occur, whereas if the microgap moved apical to the alveolar crest, greater amounts of bone resorption were seen. In their clinical human study, Veis et al. ³⁸ noted that the beneficial effect of the platform-switched concept was evident only in subcrestal implants, not in crestal or supracrestal ones. As the position of the implant platform varied from study to study, and this

information was not provided by every included study, it may be difficult to unequivocally interpret the available evidence.

The studies here included made use of implants with different brands and surface treatments. Titanium with different surface modifications shows a wide range of chemical, physical properties, and surface topographies or morphologies, depending on how they are prepared and handled, 54–56 and it is not clear whether, in general, one surface modification is better than another. The texture of the implant's surface may play a major role in marginal bone resorption. It has been shown, for example, that implants with a roughened surface that extends closer to the abutment-platform junction tend to have less alveolar bone loss. S

The results of the present study have to be interpreted with caution because of its limitations. First of all, all confounding factors may have affected the long-term outcomes and not just the fact that implants were rehabilitated with a switched platform abutment or a matching-diameter abutment, and the impact of these variables on the implant survival rate, postoperative infection and MBL⁶⁰⁻⁶⁵ is difficult to estimate if these factors are not identified separately between the two different procedures in order to perform a meta-regression analysis. Most of the studies, if not all, did not disclose how many implant were inserted and survived/lost in several different conditions. The use of grafting in some studies is a confounding risk factor, as well as the insertion of some or all implants in fresh extraction sockets, the insertion of implants in different locations, different healing periods, different prosthetic configurations, type of opposing dentition, different implant angulation ranges, splinting of the implants, and the presence of smokers. The real fact is that individual patients sometimes present with more than one risk factor, and groups of patients are typically heterogeneous with respect to risk factors and susceptibilities so the specific effect of an individual risk factor could be isolated neither for individual studies nor for the present review. This is understandable and expected because study populations are typically representative of normal populations with various risk factors.66 To precisely assess the effect of a risk factor on implant outcomes, it would be ideal to eliminate all other risk factors from the study population. Not only does the coexistence of multiple risk factors within a study population create an inability to assess the specific effect of one individual risk factor, but there is a possibility that certain risk factors together may be more detrimental than the individual risk factors alone. 66 The lack of control of the confounding factors limited the potential to draw robust conclusions. Second, much of the research in the field is limited by small cohort size and short follow-up periods. Third, some of the included studies are characterized by a low level of specificity, where the assessment of the platform-switching as a complicating factor for dental implants was not the main focus of the investigation.

5. Conclusions

The results of the present study suggest that there is a significantly less MBL at implants with platform-switching

than on implants with platform-matching. Moreover, it is also suggested that there is an increase of the MD of MBL between the approaches (platform-switched vs. platform-matched) with the increase of the follow-up time and with the increase of the mismatch between the implant platform and the abutment. Due to lack of satisfactory information, meta-analyses for the outcomes 'implant failure' and 'postoperative infection' were not performed. The results of the present review should be interpreted with caution due to the presence of uncontrolled confounding factors in the included studies, most of them with short follow-up periods.

Acknowledgements

This work was supported by CNPq, Conselho Nacional de Desenvolvimento Científico e Tecnológico – Brazil. The authors would like to thank Dr. James Rudolph Collins and Dr. Silvio Mario Meloni, for having sent us their articles, Dr. Joseph Y.K. Kan, Dr. Fernando Guerra, Dr. Hakan Bilhan, Dr. Michael S. Reddy, Dr. Fernando Duarte de Almeida, Dr. Antonio J. Flichy-Fernández, and Dr. Alexander Veis, who provided us some missing information about their studies, and Dr. Francesco Carinci and Dr. Benito Rilo, who replied our e-mail, even though it was not possible for them to provide the requested missing information.

REFERENCES

- Albrektsson T, Zarb G, Worthington P, Eriksson AR. The long-term efficacy of currently used dental implants: a review and proposed criteria of success. *International Journal* of Oral and Maxillofacial Implants 1986;1:11–25.
- Tarnow DP, Cho SC, Wallace SS. The effect of inter-implant distance on the height of inter-implant bone crest. *Journal of Periodontology* 2000;71:546–9.
- 3. Prosper L, Redaelli S, Pasi M, Zarone F, Radaelli G, Gherlone EF. A randomized prospective multicenter trial evaluating the platform-switching technique for the prevention of postrestorative crestal bone loss. *International Journal of Oral and Maxillofacial Implants* 2009;24:299–308.
- Lazzara RJ, Porter SS. Platform switching: a new concept in implant dentistry for controlling postrestorative crestal bone levels. International Journal of Periodontics and Restorative Dentistry 2006;26:9–17.
- Ericsson I, Persson LG, Berglundh T, Marinello CP, Lindhe J, Klinge B. Different types of inflammatory reactions in periimplant soft tissues. *Journal of Clinical Periodontology* 1995:22:255–61.
- Jimbo R, Albrektsson T. A comparison of marginal bone loss and clinical outcome between older, turned and newer, moderately rough implants. *Implant Dentistry* 2014.
- Strietzel FP, Neumann K, Hertel M. Impact of platform switching on marginal peri-implant bone-level changes. A systematic review and meta-analysis. Clinical Oral Implants Research 2014.
- Shrier I, Boivin JF, Steele RJ, Platt RW, Furlan A, Kakuma R, et al. Should meta-analyses of interventions include observational studies in addition to randomized controlled trials? A critical examination of underlying principles. American Journal of Epidemiology 2007;166: 1203-9.

- Chrcanovic BR, Albrektsson T, Wennerberg A. Reasons for failures of oral implants. *Journal of Oral Rehabilitation* 2014;41:443–76.
- Moher D, Liberati A, Tetzlaff J, Altman DG, Grp P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Annals of Internal Medicine 2009;151:264–9. W64.
- 11. Wells GA, Shea B, O'Connell D, Peterson J, Welch V, Losos M, et al. The Newcastle–Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. 2000. Available at: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp [cited 27.08.14].
- 12. Egger M, Smith GD. Principles of and procedures for systematic reviews. In: Egger M, Smith GD, Altman DG, editors. Systematic reviews in health care: meta-analysis in context. London: BMJ Books; 2003. p. 23–42.
- **13.** Wallace BC, Dahabreh IJ, Trikalinos TA, Lau J, Trow P, Schmid CH. Closing the gap between methodologists and end-users: R as a computational back-end. *Journal of Statistical Software* 2012;**49**:1–15.
- **14.** Hürzeler M, Fickl S, Zuhr O, Wachtel HC. Peri-implant bone level around implants with platform-switched abutments: preliminary data from a prospective study. *Journal of Oral and Maxillofacial Surgery* 2007;**65**:33–9.
- Canullo L, Iurlaro G, Iannello G. Double-blind randomized controlled trial study on post-extraction immediately restored implants using the switching platform concept: soft tissue response. Preliminary report. Clinical Oral Implants Research 2009;20:414–20.
- Crespi R, Cappare P, Gherlone E. Radiographic evaluation of marginal bone levels around platform-switched and nonplatform-switched implants used in an immediate loading protocol. International Journal of Oral and Maxillofacial Implants 2009;24:920–6.
- 17. Kielbassa AM, Martinez-de Fuentes R, Goldstein M, Arnhart C, Barlattani A, Jackowski J, et al. Randomized controlled trial comparing a variable-thread novel tapered and a standard tapered implant: interim one-year results. *Journal of Prosthetic Dentistry* 2009;101:293–305.
- 18. Trammell K, Geurs NC, O'Neal SJ, Liu PR, Haigh SJ, McNeal S, et al. A prospective, randomized, controlled comparison of platform-switched and matched-abutment implants in short-span partial denture situations. International Journal of Periodontics and Restorative Dentistry 2009;29:599–605.
- Canullo L, Fedele GR, Iannello G, Jepsen S. Platform switching and marginal bone-level alterations: the results of a randomized-controlled trial. Clinical Oral Implants Research 2010;21:115–21.
- 20. Canullo L, Iannello G, Gotz W. The influence of individual bone patterns on peri-implant bone loss: preliminary report from a 3-year randomized clinical and histologic trial in patients treated with implants restored with matching-diameter abutments or the platform-switching concept. International Journal of Oral and Maxillofacial Implants 2011;26:618–30.
- 21. Pieri F, Aldini NN, Marchetti C, Corinaldesi G. Influence of implant–abutment interface design on bone and soft tissue levels around immediately placed and restored single-tooth implants: a randomized controlled clinical trial. *International Journal of Oral and Maxillofacial Implants* 2011;26:169–78.
- 22. Canullo L, Rosa JC, Pinto VS, Francischone CE, Gotz W. Inward-inclined implant platform for the amplified platform-switching concept: 18-month follow-up report of a prospective randomized matched-pair controlled trial. International Journal of Oral and Maxillofacial Implants 2012;27:927–34.
- 23. Fernandez-Formoso N, Rilo B, Mora MJ, Martinez-Silva I, Diaz-Afonso AM. Radiographic evaluation of marginal bone maintenance around tissue level implant and bone level

- implant: a randomised controlled trial. A 1-year follow-up. *Journal of Oral Rehabilitation* 2012;**39**:830–7.
- 24. Peñarrocha-Diago MA, Flichy-Fernández AJ, Alonso-González R, Peñarrocha-Oltra D, Balaguer-Martínez J, Peñarrocha-Diago M. Influence of implant neck design and implant–abutment connection type on peri-implant health. Radiological study. Clinical Oral Implants Research 2013:24:1192–200.
- 25. Enkling N, Johren P, Katsoulis J, Bayer S, Jervoe-Storm PM, Mericske-Stern R, et al. Influence of platform switching on bone-level alterations: a three-year randomized clinical trial. *Journal of Dental Research* 2013;92:139s–45s.
- 26. Telleman G, Meijer HJ, Vissink A, Raghoebar GM. Short implants with a nanometer-sized CaP surface provided with either a platform-switched or platform-matched abutment connection in the posterior region: a randomized clinical trial. Clinical Oral Implants Research 2013;24:1316–24.
- 27. Meloni SM, Jovanovic SA, Lolli FM, Pisano M, De Riu G, De Riu N, et al. Platform switching vs regular platform implants: nine-month post-loading results from a randomised controlled trial. European Journal of Oral Implantology 2014;7:257–65.
- 28. Rocha S, Wagner W, Wiltfang J, Guerra F, Moergel M, Behrens E, et al. Platform switching versus platform matching: two-years results from a prospective randomized-controlled multicenter study. International Poster Journal of Dentistry and Oral Medicine 2014;16:796.
- 29. Telleman G, Raghoebar GM, Vissink A, Meijer HJ. Impact of platform switching on peri-implant bone remodeling around short implants in the posterior region, 1-year results from a split-mouth clinical trial. Clinical Implant Dentistry and Related Research 2014;16:70–80.
- 30. Wang YC, Kan JY, Rungcharassaeng K, Roe P, Lozada JL. Marginal bone response of implants with platform switching and non-platform switching abutments in posterior healed sites: a 1-year prospective study. Clinical Oral Implants Research 2014.
- Vigolo P, Givani A. Platform-switched restorations on widediameter implants: a 5-year clinical prospective study. International Journal of Oral and Maxillofacial Implants 2009;24:103–9.
- 32. Fickl S, Zuhr O, Stein JM, Hurzeler MB. Peri-implant bone level around implants with platform-switched abutments. *International Journal of Oral and Maxillofacial Implants* 2010;25:577–81.
- 33. Linkevicius T, Apse P, Grybauskas S, Puisys A. Influence of thin mucosal tissues on crestal bone stability around implants with platform switching: a 1-year pilot study. *Journal of Oral and Maxillofacial Surgery* 2010;68:2272–7.
- 34. Dursun E, Tulunoglu I, Canpinar P, Uysal S, Akalin FA, Tozum TF. Are marginal bone levels and implant stability/mobility affected by single-stage platform switched dental implants? A comparative clinical study. Clinical Oral Implants Research 2012;23:1161–7.
- 35. Gultekin BA, Gultekin P, Leblebicioglu B, Basegmez C, Yalcin S. Clinical evaluation of marginal bone loss and stability in two types of submerged dental implants. *International Journal of Oral and Maxillofacial Implants* 2013;28:815–23.
- 36. Glibert M, Vervaeke S, De Bruyn H, Clinical Ostman PO. Radiographic comparison between platform-shifted and nonplatform-shifted implant: a one-year prospective study. Clinical Implant Dentistry and Related Research 2014.
- Bilhan H, Mumcu E, Erol S, Kutay O. Influence of platformswitching on marginal bone levels for implants with mandibular overdentures: a retrospective clinical study. *Implant Dentistry* 2010;19:250–8.
- **38.** Veis A, Parissis N, Tsirlis A, Papadeli C, Marinis G, Zogakis A. Evaluation of peri-implant marginal bone loss using modified abutment connections at various crestal level

- placements. International Journal of Periodontics and Restorative Dentistry 2010;**30**:609–17.
- **39.** de Almeida FD, Carvalho AC, Fontes M, Pedrosa A, Costa R, Noleto JW, et al. Radiographic evaluation of marginal bone level around internal-hex implants with switched platform: a clinical case report series. *International Journal of Oral and Maxillofacial Implants* 2011;**26**:587–92.
- 40. Vandeweghe S, Nicolopoulos C, Thevissen E, Jimbo R, Wennerberg A, De Bruyn H. Immediate loading of screwretained all-ceramic crowns in immediate versus delayed single implant placement. *International Journal of* Prosthodontics 2013;26:458–64.
- 41. Quirynen M, Bollen CM, Eyssen H, van Steenberghe D. Microbial penetration along the implant components of the Brånemark system. An in vitro study. Clinical Oral Implants Research 1994;5:239–44.
- 42. Persson LG, Lekholm U, Leonhardt A, Dahlen G, Lindhe J. Bacterial colonization on internal surfaces of Brånemark system implant components. Clinical Oral Implants Research 1996;7:90–5.
- 43. do Nascimento C, Barbosa RE, Issa JP, Watanabe E, Ito IY, Albuquerque Jr RF. Bacterial leakage along the implantabutment interface of premachined or cast components. International Journal of Oral and Maxillofacial Surgery 2008:37:177–80.
- **44.** Jansen VK, Conrads G, Richter EJ. Microbial leakage and marginal fit of the implant–abutment interface. *International Journal of Oral and Maxillofacial Implants* 1997;**12**:527–40.
- **45.** Cochran DL, Bosshardt DD, Grize L, Higginbottom FL, Jones AA, Jung RE, et al. Bone response to loaded implants with non-matching implant–abutment diameters in the canine mandible. *Journal of Periodontology* 2009;**80**:609–17.
- 46. Weng D, Nagata MJ, Bosco AF, de Melo LG. Influence of microgap location and configuration on radiographic bone loss around submerged implants: an experimental study in dogs. International Journal of Oral and Maxillofacial Implants 2011;26:941–6.
- Degidi M, Nardi D, Piattelli A. Peri-implant tissue and radiographic bone levels in the immediately restored singletooth implant: a retrospective analysis. *Journal of Periodontology* 2008;79:252–9.
- **48.** Luongo R, Traini T, Guidone PC, Bianco G, Cocchetto R, Celletti R. Hard and soft tissue responses to the platformswitching technique. *International Journal of Periodontics and Restorative Dentistry* 2008;**28**:551–7.
- 49. Hermann JS, Schoolfield JD, Schenk RK, Buser D, Cochran DL. Influence of the size of the microgap on crestal bone changes around titanium implants. A histometric evaluation of unloaded non-submerged implants in the canine mandible. Journal of Periodontology 2001;72:1372–83.
- Baker WL, White CM, Cappelleri JC, Kluger J, Coleman CI. Understanding heterogeneity in meta-analysis: the role of meta-regression. International Journal of Clinical Practice 2009;63:1426–34.
- 51. Hermann JS, Jones AA, Bakaeen LG, Buser D, Schoolfield JD, Cochran DL. Influence of a machined collar on crestal bone changes around titanium implants: a histometric study in the canine mandible. *Journal of Periodontology* 2011;82:1329–38.
- 52. Bassetti R, Kaufmann R, Ebinger A, Mericske-Stern R, Enkling N. Is a grooved collar implant design superior to a machined design regarding bone level alteration? An observational pilot study. Quintessence International 2014;45:221–9.
- 53. Hermann JS, Buser D, Schenk RK, Cochran DL. Crestal bone changes around titanium implants. A histometric evaluation of unloaded non-submerged and submerged implants in the canine mandible. *Journal of Periodontology* 2000;71:1412–24.

- 54. Chrcanovic BR, Pedrosa AR, Martins MD. Chemical and topographic analysis of treated surfaces of five different commercial dental titanium implants. *Materials Research* 2012;15:372–82.
- 55. Chrcanovic BR, Leão NLC, Martins MD. Influence of different acid etchings on the superficial characteristics of Ti sandblasted with Al₂O₃. Materials Research 2013;16: 1006–14.
- Chrcanovic BR, Martins MD. Study of the influence of acid etching treatments on the superficial characteristics of Ti. Materials Research 2014;17:373–80.
- 57. Wennerberg A, Albrektsson T. On implant surfaces: a review of current knowledge and opinions. International Journal of Oral and Maxillofacial Implants 2010:25:63–74.
- 58. Norton MR. Marginal bone levels at single tooth implants with a conical fixture design. The influence of surface macro- and microstructure. Clinical Oral Implants Research
- 59. Hanggi MP, Hanggi DC, Schoolfield JD, Meyer J, Cochran DL, Hermann JS. Crestal bone changes around titanium implants. Part I: A retrospective radiographic evaluation in humans comparing two non-submerged implant designs with different machined collar lengths. *Journal of Periodontology* 2005;76:791–802.

- Chrcanovic BR, Albrektsson T, Wennerberg A. Flapless versus conventional flapped dental implant surgery: a meta-analysis. PLOS ONE 2014;9:e100624.
- Chrcanovic BR, Albrektsson T, Wennerberg A. Immediate nonfunctional versus immediate functional loading and dental implant failure rates: a systematic review and metaanalysis. *Journal of Dentistry* 2014;42:1052–9.
- 62. Chrcanovic BR, Albrektsson T, Wennerberg A. Prophylactic antibiotic regimen and dental implant failure: a meta-analysis. *Journal of Oral Rehabilitation* 2014;41:941–56.
- 63. Chrcanovic BR, Albrektsson T, Wennerberg A. Dental implants inserted in fresh extraction sockets versus healed sites: a systematic review and meta-analysis. *Journal of Dentistry* 2015;43:16–41.
- 64. Chrcanovic BR, Albrektsson T, Wennerberg A. Periodontally compromised vs. periodontally healthy patients and dental implants: a systematic review and meta-analysis. *Journal of Dentistry* 2014;42:1509–27.
- Chrcanovic BR, Albrektsson T, Wennerberg A. Diabetes and oral implant failure: a systematic review. *Journal of Dental* Research 2014:93:859–67.
- 66. Klokkevold PR, Han TJ. How do smoking, diabetes, and periodontitis affect outcomes of implant treatment? International Journal of Oral and Maxillofacial Implants 2007;22(Suppl.):173–202.